WANG Yang - 王阳

Author:Date:2020-07-07Views:279

Photo


Personal information

Name: Wang Yang

Office: Room 200-1, 6nd Building South,Hangzhou Dianzi Campus, Xiasha, Hangzhou

Current occupation: School of Sciences,Hangzhou Dianzi University

Telephone:(86)-571-87713556

E-Mail: ywang@hdu.edu.cn


EDUCATION

Sep. 1997-July. 2001, B.S. inMathematics, Department of Mathematics, Liaoning Normal University,P. R. China

Sep. 2001-July. 2004, M.S. inMathematics, Department of Mathematics, East China Normal University,P. R. China

Sep. 2004-July 2007, Ph. D inMathematics, Department of Mathematics, East China Normal University,P. R. China


Professional Working Experience

2007-2009, Lecture, School of Sciences,Hangzhou Dianzi University, Hangzhou, P. R. China

2009-2014, Associate Professor, Schoolof Sciences, Hangzhou Dianzi University, Hangzhou, P. R. China

2015-present, Professor, School ofSciences, Hangzhou Dianzi University, Hangzhou, P. R. China


RESEARCH INTEREST

My research interests include PartialDifferential Equations and Biological Mathematics. The research worksthat I have completed in the past include:

Nonlinear Elliptic and ParabolicSystems, Applications in Population Biology, Fluid Mechanics.


Selected Publications

--- L. Wei, Y. Wang, Symmetry ****ysis, conserved quantitiesand applications to a dissipative DGH equation, Journal ofDifferential Equations 266(6) (2019), 3189-3208.

--- L. Wei, Y. Wang, Blowup criterion and persistent decay fora modified Camassa- Holm system, J. Math. Phy. 59, 021501(2018).

--- L. Wei, Y. Wang, H. Zhang, Breaking waves and persistenceproperty for a two-component Camassa-Holm system, J. Math. Anal.Appl. 445(2017), 1084-1096.

--- L. Wei, Z. Qiao, Y. Wang, S. Zhou, Conserved quantities,global existence and blow-up for a generalized CH equation, DiscreteContin. Dyn. Syst.-A 37 (2017), 1733-1748.

--- Y. Wang, L. Wei, Auxiliary Lagrangian and conservationlaws for a wave equation incorporating dissipation, Commun. Theor.Phys. 63 (2015), 481-486.

--- F. Li, Y. Lou, Y. Wang, Global dynamics of a competitionmodel with non-local dispersal I: The shadow system, J. Math.Anal. Appl. 412(2014), 485–497.

--- Y. Wang, The maximal number of interior peak solutionsconcentrating on hyperplanes for a singularly perturbed Neumannproblem, Commun. Pur. Appl. Anal. 10 (2)(2011), 731-744.

--- F. Li, L. Wang, Y. Wang, On the effects of migration andinter-specific competitions in steady state of some Lotka-Volterramodel, Disc. Cont. Dynam. Sys. Series-B 15 (2011), 669-686.

--- Y. Wang, L. Wei, New exact solutions to the (2+1)-dimensional Konopelchenko- Dubrovsky equation, Commun.Nonlinear Sci. Numer. Simulat. 15 (2010), 216-224.

--- Y. Wang, L. Wei, New traveling wave solutions to somenonlinear equations via a combined method, Appl. Math. Comput.204(2008), 726-732.

--- Y. Wang, L. Wei, Nodal bubbling solutions to a weightedsinh-Poisson equations, Adv. Differential Equ.13(2008),881-906.

--- Y. Wang, L. Wei, Multiple boundary bubbling phenomenon ofsolutions to a Neumann problem, Adv. Differential Equ.13(2008), 829-856.

--- Y. Wang, Concentration phenomena of solutions for somesingularly perturbed elliptic equations, J. Math. Anal. Appl.331(2007), 927-946.

--- Y. Wang, The existence of global solution and the blowupproblem for some heat equations with P-Laplace, Acta Math. Sci.,27 B (2) (2007), 274-282.


SUPPORTINGFUNDING

1. Concentration phenomena of solutionsfor some nonlinear elliptic partial differential equations,

No. 10926057, Year: 2010

National Natural Foundation of China, ,P. R. China

2. Study on some partial differentialequation(s) of multi species diffusion models,

No. 11101111, Year: 2012-2014

National Natural Foundation of China, ,P. R. China

3. Study on the dynamic behavior ofecological models with nonlocal diffusion term,

No. LY14A010029, Year: 2014-2016

Zhejiang Provincial Natural ScienceFoundation of China